Texture Superpixel Clustering from Patch-based Nearest Neighbor Matching

Rémi Giraud Yannick Berthoumieu
Large data \rightarrow high computational times
Large data \rightarrow high computational times \rightarrow Dimension reduction
Large data \rightarrow high computational times \rightarrow Dimension reduction

- Regular multi-resolution:
 Decompose the image into regular blocks

![Image](image.png)

- **Image**
- **Decomposition into blocks**
- **Average colors**
Introduction

Large data \rightarrow high computational times \rightarrow Dimension reduction

- Regular multi-resolution:
 Decompose the image into regular blocks

- Superpixels (since [Ren and Malik, 2003]):
 Local grouping of pixels with homogeneous colors
Robustness of state-of-the-art methods

What about the ability to handle texture?

Initial image SLIC \cite{Achanta2012} ERGC \cite{Buyssens2014} ETPS \cite{Yao2015}

LSC \cite{Chen2017} SNIC \cite{Achanta2017} SCALP \cite{Giraud2018}

→ All state-of-the-art methods severely fail at clustering textures
Robustness of state-of-the-art methods

What about the ability to handle texture?

→ All state-of-the-art methods severely fail at clustering textures
→ Introduce a texture homogeneity term using patch-based distances
 → K-means-based clustering approach (TASP) → high complexity
Robustness of state-of-the-art methods

What about the ability to handle texture?

- All state-of-the-art methods severely fail at clustering textures
- Introduce a texture homogeneity term using patch-based distances
 - K-means-based clustering approach (TASP) → high complexity
 - Nearest Neighbor-based Superpixel Clustering (NNSC)
1 Introduction

2 K-means-based Clustering Approach (TASP)

3 Proposed Nearest-Neighbor Superpixel Clustering (NNSC) approach

4 Results

5 Conclusion
K-means-based Clustering Approach (TASP)

- Simple Linear Iterative Clustering (SLIC) [Achanta et al., 2012]
K-means-based Clustering Approach (TASP)

- Simple Linear Iterative Clustering (SLIC) [Achanta et al., 2012]

Distance between a pixel \(p \) and a superpixel \(S_k \):

\[
D(p, S_k) = d_{\text{color}}(F_p, F_{S_k}) + d_{\text{spatial}}(X_p, X_{S_k})m_k
\]
K-means-based Clustering Approach (TASP)

- Simple Linear Iterative Clustering (SLIC) [Achanta et al., 2012]

Distance between a pixel p and a superpixel S_k:

$$D(p, S_k) = d_{\text{color}}(F_p, F_{S_k}) + d_{\text{spatial}}(X_p, X_{S_k})m_k$$

→ Complexity $C_{\text{SLIC}} = \mathcal{O}((h \times w) \times 4 \times \text{Iter}_K\text{-means})$
K-means-based Clustering Approach (TASP)

- Pixel to superpixel texture homogeneity term:
 - Using patch-based distances

 No complex texture classification approach
 Remains in the same feature space than pixel to superpixel distances
• Pixel to superpixel texture homogeneity term:

→ Using patch-based distances

No complex texture classification approach
Remains in the same feature space than pixel to superpixel distances

Which patches to compare?
K-means-based Clustering Approach (TASP)

- Pixel to superpixel texture homogeneity term:
 - Nearest neighbor (NN) matching within the superpixel
 - Ability to find only similar texture patterns
 - Fast selection of N similar patches with PatchMatch [Barnes et al., 2009]
Pixel to superpixel texture homogeneity term:

→ Nearest neighbor (NN) matching within the superpixel

Ability to find only similar texture patterns

Fast selection of N similar patches with PatchMatch [Barnes et al., 2009]

Texture homogeneity distance:

$$d_{\text{texture}}(p, S_k) = \frac{1}{N} \sum_{p_k \in S_k} \frac{1}{n} \| F_{P(p)} - F_{P(p_k)} \|_2$$
K-means Clustering Approach

- Simple Linear Iterative Clustering (SLIC) [Achanta et al., 2012]

Constrained K-means iterative refinement

\[F_p = [l_p, a_p, b_p] \text{ color in the CIELab space} \]
\[X_p = [x_p, y_p] \text{ position} \]
\[F_{S_k}, X_{S_k} \text{ average on pixels } \in S_k \]
\[m \text{ regularity parameter} \]

Distance between a pixel \(p \) and a superpixel \(S_k \) (SLIC):

\[
D(p, S_k) = d_{\text{color}}(F_p, F_{S_k}) + d_{\text{spatial}}(X_p, X_{S_k})m_k
\]

→ Complexity \(C_{\text{SLIC}} = \mathcal{O}((h \times w) \times 4 \times \text{Iter}_{K\text{-means}}) \)
K-means Clustering Approach

- Texture-Aware SuperPixels (TASP) [Giraud et al., 2019]

Constrained K-means iterative refinement

Block init. $s \times s$

Distance between a pixel p and a superpixel S_k (TASP):

$$D(p, S_k) = d_{\text{color}}(F_p, F_{S_k}) + d_{\text{spatial}}(X_p, X_{S_k})m_k + d_{\text{texture}}(p, S_k)$$

→ Complexity $C_{\text{TASP}} = \mathcal{O}((h \times w) \times 4 \times \text{Iter}_{\text{K-means}} \times \text{Iter}_{\text{NN}})$
The proposed NNSC approach

- NNSC: Nearest Neighbor-based Superpixel Clustering

Direct pixel label update using local NN search

Grid initialization

\mathcal{L}_0

\mathcal{L}_{i-1}

No update of \mathcal{L}_i

Update of \mathcal{L}_{i+1}

Update of \mathcal{L}_i

Update of \mathcal{L}_i...

No update of \mathcal{L}_i...

Complexity reduced to $C_{\text{NNSC}} = O((h \times w) \times \text{Iter}_{\text{NN}})$
The proposed NNSC approach

- **NNSC**: Nearest Neighbor-based Superpixel Clustering

 Direct pixel label update using local NN search

→ Complexity reduced to $C_{\text{NNSC}} = \mathcal{O}((h \times w) \times \text{Iter}_{\text{NN}})$
The proposed NNSC approach

- **NNSC**: Nearest Neighbor-based Superpixel Clustering
 - Direct pixel label update using local NN search

Constrained PatchMatch (PM) [Barnes et al., 2009] algorithm:

Initialization | Propagation | Random search

Iteration #1

$V(p)$

$P(p)$
The proposed NNSC approach

- Aggregation of multiple clustering estimations from independent PM processes

Aggregation of M label maps:

$$\mathcal{L}_{\text{final}}(p) = \arg\max_{l \in \{\text{labels}\}} \sum_{i=1}^{M} \delta \mathcal{L}_N^i(p),l$$

\rightarrow Improve the robustness of the clustering
Results - Qualitative comparison to state-of-the-art

On a composite natural texture image:

Initial image

LSC [Chen et al., 2017]

SNIC [Achanta et al., 2017]

SCALP [Giraud et al., 2018]

TASP [Giraud et al., 2019]

NNSC

CTI99: dataset of 10 images containing up to 16 different textures [Randen and Husoy, 1999]
Results - Qualitative comparison to state-of-the-art

On a natural color image:

Initial image
LSC [Chen et al., 2017]
SNIC [Achanta et al., 2017]

SCALP [Giraud et al., 2018]
TASP [Giraud et al., 2019]
NNSC

BSD: dataset of 200 natural color images of size 321×481 [Martin et al., 2001]
Results - Quantitative comparison to state-of-the-art

Standard ASA metric:
Superposition with image objects

→ Best performances on the two data types with the same parameters

→ Computational time from $\approx 60s$ for TASP $\rightarrow \approx 1.5s$ for proposed NNSC
Summary of contributions

- New superpixel method robust to texture
- Faster direct patch-based nearest neighbor framework
- Accurate results on both texture and natural color datasets

Work in progress / Research perspectives

- Use of advanced texture descriptors
- Application to real data (3D medical, satellite, etc.)
Texture Superpixel Clustering from Patch-based Nearest Neighbor Matching

Thank you for your attention

Check for source codes at

K-means Clustering Framework

Distance between a pixel \(p \) and a superpixel \(S_k \):

\[
D(p, S_k) = d_{\text{color}}(F_p, F_{S_k}) + d_{\text{spatial}}(X_p, X_{S_k})^m
\]

Limitations:

- Global regularity parameter \(\rightarrow \) irregular borders with low \(m \) / inaccurate borders with high \(m \).
- Only local pixel color considered \(\rightarrow \) not robust to texture.
K-means Clustering Framework

Distance between a pixel p and a superpixel S_k:

$$D(p, S_k) = d_{\text{color}}(F_p, F_{S_k}) + d_{\text{spatial}}(X_p, X_{S_k}) m$$

Limitations:

- Global regularity parameter \rightarrow irregular borders with low m / inaccurate borders with high m.
- Only local pixel color considered \rightarrow not robust to texture.

$m = 200$
$m = 500$
Robustness of state-of-the-art methods

What about textured images?

SNIC [Achanta et al., 2017]

- $m = 20$ (default)
- $m = 200$
- $m = 500$
- $m = 10000$

SCALP [Giraud et al., 2018]

- $m = 0.075$ (default)
- $m = 0.8$
- $m = 0.85$
- $m = 1.0$

→ Even with manual regularity tuning, no explicit consideration of texture information
The proposed NNSC approach

- Automatic adaptation of the regularity parameter:

SLIC [Achanta et al., 2012]
The proposed NNSC approach

- Automatic adaptation of the regularity parameter:

\[m_k = m \exp \left(\frac{\sigma(F_p \in S_k)}{\beta} \right) \]
The proposed NNSC approach

- Automatic adaptation of the regularity parameter:

\[m_k = m \exp \left(\frac{\sigma(F_{p \in S_k})}{\beta} \right) \]

SLIC [Achanta et al., 2012]

Ponderation with feature variance within superpixels:

\[D(p, S_k) = d_{\text{color}}(F_p, F_{S_k}) + d_{\text{spatial}}(X_p, X_{S_k})m \]

SLIC clustering distance [Achanta et al., 2012]:
The proposed NNSC approach

- Automatic adaptation of the regularity parameter:

Ponderation with feature variance within superpixels:

\[m_k = m \exp \left(\frac{\sigma(F_{p \in S_k})}{\beta} \right) \]

TASP clustering distance:

\[D(p, S_k) = d_{\text{color}}(F_p, F_{S_k}) + d_{\text{spatial}}(X_p, X_{S_k})m_k \]
The proposed NNSC approach - Impact of parameters

Patch-size n

Number of label map estimations M