Fast Superpixel-based Color Transfer

Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis

1 Univ. Bordeaux, CNRS, LaBRI, UMR 5800, PICTURA, F-33400 Talence, France.
2 Univ. Bordeaux, CNRS, IMB, UMR 5251, F-33400 Talence, France.
3 Bordeaux INP, LaBRI, UMR 5800, PICTURA, F-33400 Pessac, France.
reni.giraud@labri.fr, vinh-thong.ta@labri.fr, nicolas.papadakis@math.u-bordeaux.fr

Color Transfer

Target A + Source B = Color transfer A'

Properties:
- Reduced computational time (HD, video)
- Transfer of the global color source palette
- Respect of the target grain and exposure

The Proposed Method: Fast Superpixel-based Color Transfer (SCT)

- Decomposition into superpixels [1]
- Fast superpixel matching, constrained to capture the global color palette
- Color fusion based on spatial and color similarities

Superpixel Matching

- SuperPatchMatch [2]: Finds superpixel approximate nearest neighbor
 - Initialization: A superpixel $A_1 \in A$ is assigned to a random one $B_{(i)} \in B$
 - Propagation: Minimization of $D(A_i, B_{(i)})$ using the neighbor's match

Problem: No control on the number of selected superpixels in B

Example: All red superpixels of A match a red one in $B \Rightarrow$ no transfer

Constraint on Match Diversity:

Proposition: To ensure the global capture of the source color palette, a superpixel in B cannot be selected more than ε times

What if A_j finds a better match B_k already taken by ε superpixels A_j?

Switch move: A_i can match B_k by proposing to A_j its current match $B_{(i)}$

$\forall A_j$ assigned to B_k, $C(A_i, B_k, A_j) = (D(A_i, B_k) - D(A_i, B_{(i)}))$

If $\exists A_j, C(A_i, B_k, A_j) < 0$, the global distance can be reduced with

$\arg \min_{A_{(i)}} C(A_i, B_k, A_j) \rightarrow B_{(i)}$

Color Fusion Framework

- Color Fusion with Non-Local Means Framework [3]:
 - Superpixel $A_i = [x_i, C_i]$ = $[(x_i/N_x, y_i/N_y), (r, g, b)]/255$
 - For a pixel $p \in A_i$, contribution of all superpixels A_j matched to $B_{(i)}$ and weighted transfer of average colors $C_{B_{(i)}}$:
 $A'(p) = \sum_{j} \sum_{i} \omega(p, A_i) C_{B_{(i)}}$

- Weighting based on Spatial and Color Similarity:
 - Distance using covariance information of A_i:
 $\omega(p, A_i) = \exp \left(-\frac{(p - A_j)^T Q_i^{-1} (p - A_j) + \sigma(p)}\right)$
 $Q_i = Q(A_i) = \left(\begin{array}{cc} \delta_x^2 \text{Cov}(X_i) & 0 \\ 0 & \delta_y^2 \text{Cov}(C_i) \end{array} \right)$

- Results

 - SCT pipeline steps: Total computational time <1s (480x360 pixels)

Source/Target Superpixels Matched colors SCT color fusion result

- Influence of Match Diversity:
 - With the proposed constraint, global capture of the source color palette

Maps showing the selection of source superpixels (black is zero, white is highest number of selection)

- Comparison to State-of-the-Art Methods:
 - Visually competitive results. Respect of the target grain and exposure

Source/Target SCT $\varepsilon = \infty$ SCT $\varepsilon = 3$ Source/Target SCT $\varepsilon = \infty$ SCT $\varepsilon = 1$

* This work has been carried out with financial support from the French State, managed by the French National Research Agency (ANR) in the frame of the GOTMI project (ANR-16-CE33-0010-01) and the Investments for the future Program IdEx Bordeaux (ANR-10-IDEX-03-02) with the Cluster of excellence CPU.